Parallel Algorithms for Tensor Train Arithmetic
نویسندگان
چکیده
منابع مشابه
Tensor Networks for Latent Variable Analysis. Part I: Algorithms for Tensor Train Decomposition
Decompositions of tensors into factor matrices, which interact through a core tensor, have found numerous applications in signal processing and machine learning. A more general tensor model which represents data as an ordered network of sub-tensors of order-2 or order-3 has, so far, not been widely considered in these fields, although this so-called tensor network decomposition has been long st...
متن کاملEfficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملParallel algorithms for tensor completion in the CP format
Low-rank tensor completion addresses the task of filling in missing entries in multi-dimensional data. It has proven its versatility in numerous applications, including context-aware recommender systems and multivariate function learning. To handle large-scale datasets and applications that feature high dimensions, the development of distributed algorithms is central. In this work, we propose n...
متن کاملTensor Train Neighborhood Preserving Embedding
In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multidimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel tradeoff gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown t...
متن کاملAlgorithms for Arithmetic Circuits
Given a multivariate polynomial f(X) ∈ F[X] as an arithmetic circuit we would like to efficiently determine: 1. Identity Testing. Is f(X) identically zero? 2. Degree Computation. Is the degree of the polynomial f(X) at most a given integer d . 3. Polynomial Equivalence. Upto an invertible linear transformation of its variables, is f(X) equal to a given polynomial g(X). The algorithmic complexit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2022
ISSN: ['1095-7197', '1064-8275']
DOI: https://doi.org/10.1137/20m1387158